coverShot?.png

SAIVE

How might we create a safer experience for cyclists using the appropriate amount of technology?

SAIVE (smart artificial interactive vehicle ecosystem) is a near-future vision where vehicles and commuters talk to one another while automatically recording and broadcasting data. I worked with Ananda Annisa Prasetyanto and Qiao Yin on this project. Special thanks to Carly Burton at Cognizant.

Concept Details

Turn Signals

If SAIVE predicts that a car’s near-future trajectory will impact a nearby person, their turn signal will automatically flash, even if the driver hasn't turned on their blinker. The key is that false positive turn signals have minimal consequences.


1.jpg

Dooring

"Dooring" is when the opened door of a parked car collides with a biker. If SAIVE predicts this will happen, a notification will be projected onto the car window and the door will be temporarily locked. 

 

Technology Behind SAIVE

Halo'd Smart Phones

A "halo'd" object is similar to a smart object, constantly producing data about it's environment. In response to passionate interviews, we intentionally chose to halo the smart phones of cyclists instead of the bikes themselves. Location and velocity data can be captured by a smart phone in the pocket or backpack of a cyclist. 

5.jpg

Driver Data

Drivers already have the potential to be predictable through normal driving activity. The speed of the car, angle of the steering wheel, weight on the seat cushion, and many other variables can already be analyzed.

2.jpg

DSRC

DSRC, "dedicated short range communication", is similar to bluetooth technology and is the backbone of SAIVE. The implementation of DSRC within the ecosystem requires a vast degree of edge computing which isn't possible with today's technology. As this was a future concept, we didn’t see a problem with this constraint.

coverShot?.png

Technology Already in Cities

Autonomous vehicles and smart traffic signals, both which have been selectively implemented in Pittsburgh, collect vast amounts of data, adding a wealth of information to SAIVE.

Process

Research

Our team conducted interviews with commuters (cyclists, motorists, and pedestrians) as well as experts in cycling and traffic flow in order to gain insights on the current transportation system. Cyclists are primarily subordinate actors on the road and on the sidewalk, so we decided to focus our effort on improving their experience.

Directed storytelling

We asked commuters to walk us through their daily commute with Google Maps, as contextual inquiry about the challenges they face on the road may have proven dangerous.

IMAG0909.jpg

Spatial Observation

We decided to spend time observing the interactions between bikers, pedestrians, and motorists in order to see if the relationships between the groups were truly as described.

Synthesis

Mapping a cyclist's experience from start to end, while seeming unnecessary at times, helped ensure that we would be maximizing our impact for urban cyclists.

Journey Map - Page 1FIN.png

After identifying our problem space, we decided to check back with our project brief, which was to implement AI into a system. We decided to focus on a relatively near-future concept, that of “alerts” and “bike visibility”.

Affinity Diagramming2.png

We moved forward with an abbreviated design sprint in order to generate numerous ideas and figure out the key interactions we wanted to support between cyclists and other actors on the road.

Whiteboard Process.jpg

After deciding on a large number of interactions we wanted to support, selecting only a few to illustrate with our concept video was the final step. Choosing interactions which were easy to demonstrate while having a large impact was our sweet spot.